Supervised and unsupervised learning in processing myographic patterns
نویسندگان
چکیده
منابع مشابه
Multilingual Metaphor Processing: Experiments with Semi-Supervised and Unsupervised Learning
Highly frequent in language and communication, metaphor represents a significant challenge for Natural Language Processing (NLP) applications. Computational work on metaphor has traditionally evolved around the use of hand-coded knowledge, making the systems hard to scale. Recent years have witnessed a rise in statistical approaches to metaphor processing. However, these approaches often requir...
متن کاملSupervised and unsupervised learning in phonetic adaptation
Speech perception requires ongoing perceptual category learning. Each talker speaks differently, and listeners need to learn each talker’s particular acoustic cue distributions in order to comprehend speech robustly from multiple talkers. This phonetic adaptation is a semi-supervised learning problem, because sometimes a particular cue value occurs with information that labels the talker’s inte...
متن کاملMeta-Unsupervised-Learning: A supervised approach to unsupervised learning
We introduce a new paradigm to investigate unsupervised learning, reducing unsupervised learning to supervised learning. Specifically, we mitigate the subjectivity in unsupervised decision-making by leveraging knowledge acquired from prior, possibly heterogeneous, supervised learning tasks. We demonstrate the versatility of our framework via comprehensive expositions and detailed experiments on...
متن کاملEnsemble learning with trees and rules: Supervised, semi-supervised, unsupervised
In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for supervised, semi-supervised and unsupervised learning problems. We show with various examples that for high dimensional regression problems the models constructed by post processing the rules with partial least squares regression have significantly better prediction performance than ...
متن کاملContributions to Unsupervised and Semi-Supervised Learning
This thesis studies two problems in theoretical machine learning. The first part of the thesis investigates the statistical stability of clustering algorithms. In the second part, we study the relative advantage of having unlabeled data in classification problems. Clustering stability was proposed and used as a model selection method in clustering tasks. The main idea of the method is that from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2018
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1117/1/012008